+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Перенос через знак равно

Решение линейных уравнений с одной переменной

Перенос через знак равно

В данной статье рассмотрим принцип решения таких уравнений как линейные уравнения. Запишем определение этих уравнений, зададим общий вид. Разберем все условия нахождения решений линейных уравнений, используя, в том числе, практические примеры.

Обратим внимание, что материал ниже содержит информацию по линейным уравнениям с одной переменной. Линейные уравнения с двумя переменными рассматриваются в отдельной статье.

Что такое линейное уравнение

Определение 1

Линейное уравнение – это уравнение, запись которого такова:
a·x=b, где x – переменная, a и b – некоторые числа.

Такая формулировка использована в учебнике алгебры (7 класс) Ю.Н.Макарычева.

Пример 1

Примерами линейных уравнений будут:

3·x=11 (уравнение с одной переменной x при а=5 и b=10);

−3,1·y=0 (линейное уравнение с переменной y, где а=-3,1 и b=0);

x=−4 и −x=5,37 (линейные уравнения, где число a записано в явном виде и равно 1 и -1 соответственно. Для первого уравнения b=-4; для второго – b=5,37) и т.п.

В различных учебных материалах могут встречаться разные определения. К примеру, Виленкин Н.Я. к линейным относит также те уравнения, которые возможно преобразовать в вид a·x=b при помощи переноса слагаемых из одной части в другую со сменой знака и приведения подобных слагаемых. Если следовать такой трактовке, уравнение 5·x=2·x+6 – также линейное.

А вот учебник алгебры (7 класс) Мордковича А.Г. задает такое описание:

Определение 2

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0, где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

Пример 2

Примером линейных уравнений подобного вида могут быть:

 3·x−7=0 (a=3, b= −7);

1,8·y+7,9=0 (a=1,8, b=7,9).

Но также там приведены примеры линейных уравнений, которые мы уже использовали выше: вида a·x=b, например, 6·x=35.

Мы сразу условимся, что в данной статье под линейным уравнением с одной переменной мы будем понимать уравнение записи a·x+b=0, где x – переменная; a, b – коэффициенты.

Подобная форма линейного уравнения нам видится наиболее оправданной, поскольку линейные уравнения – это алгебраические уравнения первой степени.

А прочие уравнения, указанные выше, и уравнения, приведенные равносильными преобразованиями в вид a·x+b=0, определим, как уравнения, сводящиеся к линейным уравнениям.

При таком подходе уравнение 5·x+8=0 – линейное, а 5·x=−8 –  уравнение, сводящееся к линейному.

Принцип решения линейных уравнений

Рассмотрим, как определить, будет ли заданное линейное уравнение иметь корни и, если да, то сколько и как их определить.

Определение 3

Факт наличия корней линейного уравнения определятся значениями коэффициентов a и b. Запишем эти условия:

  • при a≠0 линейное уравнение имеет единственный корень x=-ba;
  • при a=0 и b≠0 линейное уравнение не имеет корней;
  • при a=0 и b=0 линейное уравнение имеет бесконечно много корней. По сути в данном случае любое число может стать корнем линейного уравнения.

Дадим пояснение. Нам известно, что в процессе решения уравнения возможно осуществлять преобразование заданного уравнения в равносильное ему, а значит имеющее те же корни, что исходное уравнение, или также не имеющее корней. Мы можем производить следующие равносильные преобразования:

  • перенести слагаемое из одной части в другую, сменив знак на противоположный;
  • умножить или разделить обе части уравнения на одно и то же число, не равное нулю.

Таким образом, преобразуем линейное уравнение a·x+b=0, перенеся слагаемое b из левой части в правую часть со сменой знака. Получим: a·x=−b.

Далее мы разделим обе части равенства на число а, при этом условившись, что это число отлично от нуля, иначе деление станет невозможным. Случай, когда а=0, рассмотрим позже.

Итак, производим деление обеих частей уравнения на не равное нулю число а, получив в итоге равенство вида x=-ba. Т.е., когда a≠0, исходное уравнение a·x+b=0 равносильно равенству x=-ba, в котором очевиден корень -ba.

Методом от противного возможно продемонстрировать, что найденный корень – единственный. Зададим обозначение найденного корня -ba как x1. Выскажем предположение, что имеется еще один корень линейного уравнения с обозначением x2.

И конечно: x2≠x1, а это, в свою очередь, опираясь на определение равных чисел через разность, равносильно условию x1−x2≠0. С учетом вышесказанного мы можем составить следующие равенства, подставив корни:
a·x1+b=0 и a·x2+b=0.

Свойство числовых равенств дает возможность произвести почленное вычитание частей равенств:

a·x1+b−(a·x2+b)=0−0, отсюда: a·(x1−x2)+(b−b)=0 и далее a·(x1−x2)=0. Равенство a·(x1−x2)=0 является неверным, поскольку ранее условием было задано, что a≠0 и x1−x2≠0. Полученное противоречие и служит доказательством того, что при a≠0 линейное уравнение a·x+b=0 имеет лишь один корень.

Обоснуем еще два пункта условий, содержащие a=0.

Когда a=0 линейное уравнение a·x+b=0 запишется как 0·x+b=0. Свойство умножения числа на нуль дает нам право утверждать, что какое бы число не было взято в качестве x, подставив его в равенство 0·x+b=0, получим b=0. Равенство справедливо при  b=0; в прочих случаях, когда b≠0, равенство становится неверным.

Таким образом, когда a=0 и  b=0, любое число может стать корнем линейного уравнения a·x+b=0, поскольку при выполнении этих условий, подставляя вместо x любое число, получаем верное числовое равенство 0=0. Когда же a=0 и b≠0 линейное уравнение a·x+b=0 вовсе не будет иметь корней, поскольку при выполнении указанных условий, подставляя вместо x любое число, получаем неверное числовое равенство b=0.

Все приведенные рассуждения дают нам возможность записать алгоритм, дающий возможность найти решение любого линейного уравнения:

  • по виду записи определяем значения коэффициентов a и b и анализируем их;
  • при a=0 и b=0 уравнение будет иметь бесконечно много корней, т.е. любое число станет корнем заданного уравнения;
  • при a=0 и b≠0 заданное уравнение не будет иметь корней;
  • при a, отличном от нуля, начинаем поиск единственного корня исходного линейного уравнения:
  1. перенесем коэффициент b в правую часть со сменой знака на противоположный, приводя линейное уравнение к виду a·x=−b;
  2. обе части полученного равенства делим на число a, что даст нам искомый корень заданного уравнения: x=-ba.

Собственно, описанная последовательность действий и есть ответ на вопрос, как находить решение линейного уравнения.

Напоследок уточним, что уравнения вида a·x=b решаются по похожему алгоритму с единственным отличием, что число b в такой записи уже перенесено в нужную часть уравнения, и при a≠0 можно сразу выполнять деление частей уравнения на число a.

Таким образом, чтобы найти решение уравнения a·x=b, используем такой алгоритм:

  • при a=0 и b=0 уравнение будет иметь бесконечно много корней, т.е. любое число может стать его корнем;
  • при a=0 и b≠0 заданное уравнение не будет иметь корней;
  • при a, не равном нулю, обе части уравнения делятся на число a, что дает возможность найти единственный корень, который равен ba.

Примеры решения линейных уравнений

Пример 3

Необходимо решить линейное уравнение 0·x−0=0.

Решение

По записи заданного уравнения мы видим, что a=0 и b=−0 (или b=0, что то же самое). Таким образом, заданное уравнение может иметь бесконечно много корней или любое число.

Ответ: x – любое число.

Пример 4

Необходимо определить, имеет ли корни уравнение 0·x+2,7=0.

Решение

По записи определяем, что а=0, b=2,7. Таким образом, заданное уравнение не будет иметь корней.

Ответ: исходное линейное уравнение не имеет корней.

Пример 5

Задано линейное уравнение 0,3·x−0,027=0. Необходимо решить его.

Решение

По записи уравнения определяем, что а=0,3; b= -0,027, что позволяет нам утверждать наличие единственного корня у заданного уравнения.

Следуя алгоритму, переносим b в правую часть уравнения, сменив знак, получаем: 0,3·x=0,027. Далее разделим обе части полученного равенства на а=0,3, тогда: x=0,0270,3.

Осуществим деление десятичных дробей:

0,0270,3=27300=3·93·100=9100=0,09

Полученный результат есть корень заданного уравнения.

Кратко решение запишем так:

0,3·x-0,027=0,0,3·x=0,027,x=0,0270,3,x=0,09.

Ответ: x=0,09.

Для наглядности приведем решение уравнения записи a·x=b

Пример N

Заданы уравнения: 1) 0·x=0; 2) 0·x=−9; 3) -38·x=-334. Необходимо решить их.

Решение

Все заданные уравнения отвечают записи a·x=b. Рассмотрим по очереди.

В уравнении 0·x=0, a=0 и b=0, что означает: любое число может быть корнем этого уравнения.

Во втором уравнении 0·x=−9: a=0 и b=−9, таким образом, это уравнение не будет иметь корней.

По виду последнего уравнения -38·x=-334  запишем коэффициенты: a=-38, b=-334, т.е. уравнение имеет единственный корень. Найдем его. Поделим обе части уравнения на a, получим в результате:  x=-334-38. Упростим дробь, применив правило деления отрицательных чисел с последующим переводом смешанного числа в обыкновенную дробь и делением обыкновенных дробей:

-334-38=33438=15438=154·83=15·84·3=10

Кратко решение запишем так:

-38·x=-334,x=-334-38,x=10.

Ответ: 1) x – любое число, 2) уравнение не имеет корней, 3) x=10.

Линейные уравнения

Перенос через знак равно

Проще говоря, это такие уравнения, в которых переменные (обычно иксы) в первой степени. При этом не должно быть переменных в знаменателях дробей.

Например:\(2x+7=0\)Здесь \(a=2, b=7\)
\(5=0\)А тут \(a=0, b=5\) (пояснение: данное уравнение может быть представлено в виде \(0\cdot x+5=0\))
\(-7(5-3y)=91\)Здесь \(a\) и \(b\) изначально не определены, но преобразовав уравнение, мы сможем их найти.
\(\frac{x+2}{3}\)\(+x=1-\)\(\frac{3}{4}\)\(x\)Тоже самое, \(a\) и \(b\) пока что неизвестны.

При решении линейных уравнений, мы стремимся найти корень, то есть такое значение для переменной, которое превратит уравнение в правильное равенство

В простых уравнениях корень очевиден сразу или легко находиться подбором. Например, понятно, что корнем уравнения \(x+3=5\) будет число \(2\), ведь именно двойка при подстановке ее вместо икса даст \(5=5\) – верное равенство.

Однако в более сложных случаях ответ сразу не виден. И тогда на помощь приходят равносильные преобразования.

Чтобы найти корень уравнения нужно равносильными преобразования привести данное нам уравнение к виду

\(x=[число]\)

Это число и будет корнем.

То есть, мы преобразовываем уравнение, делая его с каждым шагом все проще, до тех пор, пока не сведем к совсем примитивному уравнению «икс = число», где корень – очевиден. Наиболее часто применяемыми при решении линейных уравнений являются следующие преобразования:

1. Прибавление или вычитание из обеих частей уравнения одинакового числа или выражения

Например: прибавим \(5\) к обеим частям уравнения \(6x-5=1\)

                  \(6x-5=1\)         \(|+5\) \(6x-5+5=1+5\)

\(6x=6\)

Обратите внимание, что тот же результат мы могли бы получить быстрее – просто записав пятерку с другой стороны уравнения и поменяв при этом ее знак. Собственно, именно так и делается школьный «перенос через равно со сменой знака на противоположный».

2. Умножение или деление обеих частей уравнения на одинаковое число или выражение

Например: разделим уравнение \(-2x=8\) на минус два

                  \(-2x=8\)         \(|:(-2)\)
\(x=-4\)

Обычно данный шаг выполняется в самом конце, когда уравнение уже приведено к виду \(ax=b\), и мы делим на \(a\), чтобы убрать его слева.

3. Использование свойств и законов математики: раскрытие скобок, приведение подобных слагаемых, сокращение дробей и т.д

Например: раскроем скобки в уравнении \(2(3+x)=4(3x-2)-5\)

                  \(6+2x=12x-8-5\)

Чаще всего при решении линейного уравнения приходиться делать несколько разных преобразований.

Пример. Решить линейное уравнение \(6(4-x)+x=3-2x\)

Решение:

\(6(4-x)+x=3-2x\)Раскрываем скобки
\(24-6x+x=3-2x\)Приводим подобные слагаемые
\(24-5x=3-2x\)Прибавляем \(2x\) слева и справа
\(24-5x+2x=3\)Вычитаем \(24\) из обеих частей уравнения
\(-5x+2x=3-24\)Опять приводим подобные слагаемые
\(-3x=-21\)Теперь делим уравнение на \(-3\), тем самым убирая коэффициент перед иксом в левой части.
\(x=7\)

Ответ: \(7\)

Ответ найден. Однако давайте его проверим. Если семерка действительно корень, то при подстановке ее вместо икса в первоначальное уравнение должно получиться верное равенство – одинаковые числа слева и справа. Пробуем.

                   Проверка:          \(6(4-7)+7=3-2\cdot7\)            \(6\cdot(-3)+7=3-14\)                 \(-18+7=-11\)

                  \(-11=-11\)

Сошлось. Значит, семерка и в самом деле является корнем исходного линейного уравнения.

Не ленитесь проверять подстановкой найденные вами ответы, особенно если вы решаете уравнение на контрольной или экзамене.

Остается вопрос – а как определить, что делать с уравнением на очередном шаге? Как именно его преобразовывать? Делить на что-то? Или вычитать? И что конкретно вычитать? На что делить?

Ответ прост:

Ваша цель – привести уравнение к виду \(x=[число]\), то есть, слева икс без коэффициентов и чисел, а справа – только число без переменных. Поэтому смотрите, что вам мешает и делайте действие, обратное тому, что делает мешающий компонент.

Чтобы лучше это понять, разберем по шагам решение линейного уравнения \(x+3=13-4x\).

Давайте подумаем: чем данное уравнение отличается от \(x=[число]\)? Что нам мешает? Что не так?

Ну, во-первых, мешает тройка, так как слева должен быть только одинокий икс, без чисел. А что «делает» тройка? Прибавляется к иксу. Значит, чтобы ее убрать – вычтем такую же тройку. Но если мы вычитаем тройку слева, то должны вычесть ее и справа, чтобы равенство не было нарушено.

                  \(x+3=13-4x\)         \(|-3\) \(x+3-3=13-4x-3\)

\(x=10-4x\)

Хорошо. Теперь что мешает? \(4x\) справа, ведь там должны быть только числа. \(4x\) вычитается – убираем прибавлением.

                  \(x=10-4x\)         \(|+4x\)
\(x+4x=10-4x+4x\)

Теперь приводим подобные слагаемые слева и справа.

\(5x=10\)

Уже почти готово. Осталось убрать пятерку слева. Что она «делает»? Умножается на икс. Поэтому убираем ее делением.

                  \(5x=10\)         \(|:5\)
\(\frac{5x}{5}\)\(=\)\(\frac{10}{5}\)
\(x=2\)

Решение завершено, корень уравнения – двойка. Можете проверить подстановкой.

Заметим, что чаще всего корень в линейных уравнениях только один. Однако могут встретиться два особых случая.

Пример. Решить уравнение \(3x-1=2(x+3)+x\)

Решение:

\(3x-1=2(x+3)+x\)Раскроем скобки
\(3x-1=2x+6+x\)Приведем подобные слагаемые
\(3x-1=3x+6\)Перенесем члены с переменной влево, а просто числа – вправо, меняя при этом знаки
\(3x-3x=6+1\)Опять приведем подобные слагаемые
\(0=7\)Ну и при каком иксе ноль станет равен \(7\)? Ни при каком, тут икс вообще никак не влияет и не может «исправить» неверность получившегося равенства. Поэтому ответ – в этом линейном уравнении нет корней.

Ответ: нет корней.

На самом деле, то, что мы придем к такому результату было видно раньше, еще когда мы получили \(3x-1=3x+6\). Вдумайтесь: как могут быть равны \(3x\) из которых вычли \(1\), и \(3x\) к которым прибавили \(6\)? Очевидно, что никак, ведь с одним и тем же выражением сделали разные действия! Понятно, что результаты будут отличаться.

Пример. Решить линейное уравнение \(8(x+2)-4=12x-4(x-3)\)

Решение:

\(8(x+2)-4=12x-4(x-3)\)Начинаем преобразовывать – раскрываем скобки
\(8x+16-4=12x-4x+12\)Приводим подобные слагаемые
\(8x+12=8x+12\)Переносом через равно собираем иксы справа, а числа слева
\(8x-8x=12-12\)И вновь приводим подобные
\(0=0\)Очевидно, что тут “подойдет” любое значение для икса, ведь он никак не влияет на полученное уравнение. И значит равенство всегда будет верным.

Ответ: любое число.

Это, кстати, было заметно еще раньше, на этапе: \(8x+12=8x+12\). Действительно, слева и справа – одинаковые выражения. Какой икс ни подставь – будет одно и то же число и там, и там.

Исходное уравнение не всегда сразу выглядит как линейное, иногда оно «маскируется» под другие, более сложные уравнения. Однако в процессе преобразований маскировка спадает.

Пример. Найдите корень уравнения \(2x{2}-(x-4){2}=(3+x){2}-15\)

Решение:

\(2x{2}-(x-4){2}=(3+x){2}-15\)Казалось бы, здесь есть икс в квадрате – это не линейное уравнение! Но не спешите. Давайте применим формулы сокращенного умножения
\(2x{2}-(x{2}-8x+16)=9+6x+x{2}-15\)Почему результат раскрытия \((x-4){2}\) стоит в скобке, а результат \((3+x){2}\) нет? Потому что перед первым квадратом стоит минус, который изменит все знаки. И чтобы не забыть об этом – берем результат в скобки, которую теперь раскрываем.
\(2x{2}-x{2}+8x-16=9+6x+x{2}-15\)Приводим подобные слагаемые
\(x{2}+8x-16=x{2}+6x-6\)Далее как обычно: «иксы – влево, числа – вправо», не забывая менять знаки.
\(x{2}-x{2}+8x-6x=-6+16\)Опять приводим подобные.
\(2x=10\)Вот так. Оказывается, исходное уравнение – вполне себе линейное, а иксы в квадрате не более чем ширма, чтоб нас запутать. 🙂 Дорешиваем, деля уравнение на \(2\), и получаем ответ.

Ответ: \(x=5\)

Пример. Решить линейное уравнение \(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)

Решение:

\(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)Уравнение не похоже на линейное, дроби какие-то… Однако давайте избавимся от знаменателей, умножив обе части уравнения на общий знаменатель всех дробей – шестерку
\(6\cdot\)\((\frac{x+2}{2}\) \(-\) \(\frac{1}{3})\) \(=\) \(\frac{9+7x}{6}\)\(\cdot 6\)Раскрываем скобку слева
\(6\cdot\)\(\frac{x+2}{2}\) \(-\) \(6\cdot\)\(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)\(\cdot 6\)Теперь сокращаем знаменатели
\(3(x+2)-2=9+7x\)Вот теперь похоже на обычное линейное! Дорешиваем его. Раскрываем скобки
\(3x+6-2=9+7x\)Переносом через равно собираем иксы справа, а числа слева
\(3x-7x=9-6+2\)Приводим подобные слагаемые
\(-4x=5\)Ну и поделив на \(-4\) правую и левую часть, получаем ответ

Ответ: \(x=-1,25\)

Смотрите также:
Линейная функция

Скачать статью

Как объяснить уравнения с х (икс) школьнику в 4 классе?

Перенос через знак равно

Творческая Анна

Недавно звонит мама школьника, с которым я занимаюсь и просит объяснить математику ребёнку, т.к он не понимает, а она не него кричит и разговор с сыном не выходит.

У меня не математический склад ума, творческим людям это не свойственно, но я сказала, что посмотрю что они проходят и попробую. И вот что получилось.

Я взяла лист бумаги формата А4, обычный белый, фломастеры, карандаш в руки и начала выделять, то что стоит понять, запомнить, обратить внимание. И чтобы было видно, куда эта цифра переходит и как меняется.

Объяснение примеров с левой стороны, на правую сторону.

Пример № 1

Пример уравнения для 4 класса со знаком плюс.

Х + 320 =80*7

Самым первым действием смотрим, что мы можем сделать в этом уравнении? Тут мы можем выполнить умножение. Умножаем 80*7 получаем 560. Переписываем ещё раз.

Х + 320 = 560 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 560 – 320. Минус ставим потому что при переносе числа, знак что перед ним меняется на противоположный. Выполняем вычитание.

Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Проверка:

240 + 320 = 80*7  Складываем числа, с другой стороны умножаем.

560 = 560.

Всё верно! Значит мы решили уравнение правильно!

Пример № 2

Пример уравнения для 4 класса со знаком минус.

Х – 180 = 240/3

Первым действием смотрим, что мы можем сделать в этом уравнении?  В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз.

Х – 180 = 80 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 80 + 180  Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем.

Х = 260  Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Пример № 3

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

400 – х = 275 + 25  Складываем числа.

400 – х = 300  Числа разделены знаком равенства, х является отрицательным. Чтобы сделать его положительным, нам нужно перенести его через знак равно, собираем числа в одной стороне, х в другой.

400  – 300 = х Цифра 300 была положительной, при переносе в другую сторону поменяла знак и стал минус. Считаем.

100 = х

Т.к не принято так писать, а первым в уравнении должен быть х, просто меняем их местами.

Х = 100.

Пример № 4

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

72 – х = 18 * 3 Выполняем умножение. Переписываем пример.

72 – х = 54  Выстраиваем числа в одну сторону, х в другую. Цифра 54 меняет знак на противоположный, т.к перепрыгивает через знак равно.

72 – 54 = х  Считаем.

18 = х  Меняем местами, для удобства.

Х = 18

Пример № 5

Пример уравнения с х с вычитанием и сложением для 4 класса.

Х – 290 = 470 + 230 Складываем.

Х – 290 = 700  Выставляем числа с одной стороны.

Х = 700 + 290 Считаем.

Х = 990

Пример № 6

Пример уравнения с х на умножение и деление для 4 класса.

15 * х = 630/70 Выполняем деление. Переписываем уравнение.

15 * х = 90 Это тоже самое, что 15х = 90  Оставляем х с одной стороны, числа с другой. Данное уравнение принимает следующий вид.

Х = 90/15 при переносе цифры 15 знак умножения меняется на деление. Считаем.

Х = 6

Теперь озвучиваем основные правила:

  1. Умножаем, складываем, делим или вычитаем;

    Выполняем то, что можно сделать, уравнение станет немного короче.

  2. Х в одну сторону, цифры в другую.

    Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую.

  3. При переносе х или цифры через знак равенства, их знак меняется на противоположный.

     Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс.

  4. Если в конце уравнение начинается с числа, то просто меняем местами.
  5. Всегда делаем проверку!

При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку.

Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры.

Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал.

Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу.

Данное подробное описание, как объяснить уравнения с х школьнику для:

  • родителей;
  • школьников;
  • репетиторов;
  • бабушек и дедушек;
  • учителей;

Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают.

Из своей практики

Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.

При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.

В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.

Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.

Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что  на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.

← Я-репетитор. Подработка в интернете и освоение профессииМасленица: дата празднования, история и традиции праздника. Рецепт блинов →

by HyperComments

Другие материалы рубрики

Что такое «линейные уравнения»

Линейное уравнениеэто алгебраическое уравнение, у которого полная степень составляющих его многочленов равна  . Оно выглядит следующим образом:

 , где   и   – любые числа и

 .

Для нашего случая с Васей и яблоками мы запишем:

  – «если Вася раздаст всем троим друзьям одинаковое количество яблок, у него яблок не останется»

Иными словами линейное уравнение это такое уравнение, у которого нет иксов в квадрате, в кубе и т.д., здесь есть дроби, но и нет иксов в знаменателях, т.е. нет деления на икс.

«Скрытые» линейные уравнения, или важность тождественных преобразований

Несмотря на то, что на первый взгляд все предельно просто, при решении уравнений необходимо быть внимательным, потому что линейными уравнениями называются не только уравнения вида  , но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду.

Например:

Мы видим, что справа стоит  , что, по идее, уже говорит о том, что уравнение не линейное.

Мало того, если мы раскроем скобки, то получим еще два слагаемых, в которых будет  , но не надо торопиться с выводами!

Прежде, чем судить, является ли уравнение линейным, необходимо произвести все преобразования и таким образом, упростить исходный пример.

При этом преобразования могут изменять внешний вид, но никак не саму суть уравнения.

Иными словами данные преобразования должны быть тождественными или равносильными.

Таких преобразований всего два, но они играют очень, ОЧЕНЬ важную роль при решении задач. Рассмотрим оба преобразования на конкретных примерах.

Перенос влево – вправо

Допустим, нам необходимо решить такое уравнение:

Еще в начальной школе нам говорили: «с иксами – влево, без иксов – вправо».

Какое выражение с иксом стоит справа?

Правильно,  , а не как не  .

И это важно, так как при неправильном понимании этого, казалось бы простого вопроса, выходит неверный ответ.

А какое выражение с иксом стоит слева?

Правильно,  .

Теперь, когда мы с этим разобрались, переносим все слагаемые с неизвестными в левую сторону, а все, что известно – в правую.

И помня, что если перед числом нет никакого знака, например,  , то значит число положительно, то есть перед ним стоит знак « ».

ВАЖНО: при переносе через знак равенства, знаки при слагаемых меняются на противоположные.

Перенес? Что у тебя получилось?

Все, что осталось сделать – привести подобные слагаемые. Приводим:

Итак, первое тождественное преобразование мы успешно разобрали, хотя уверена, что ты и без меня его знал и активно использовал.

Главное – не забывай про знаки при числах и меняй их на противоположные при переносе через знак равенства!

Умножение-деление

Начнем сразу же с примера

Смотрим и соображаем: что нам не нравится в этом примере?

Неизвестное все в одной части, известные – в другой, но что-то нам мешает…

И это что-то – четверка, так как если бы ее не было, все было бы идеально – икс равен числу – именно так, как нам и нужно!

Как можно от неё избавиться?

Перенести вправо мы не можем, так как тогда нам нужно переносить весь множитель (мы же не можем ее взять и оторвать от  ), а переносить весь множитель тоже не имеет смысла…

Пришло время вспомнить про деление, в связи с чем разделим все как раз на  !

Все – это означает и левую, и правую часть. Так и только так!

Что у нас получается?

Вот и ответ.

Посмотрим теперь другой пример:

Догадываешься, что нужно сделать в этом случае? Правильно, умножить левую и правую части на  ! Какой ты получил ответ? Правильно.  .

ВАЖНО: при делении, либо умножении на какое-либо число, действие совершается как в левой, так и в правой части уравнения

Наверняка все про тождественные преобразования ты и так уже знал. Считай, что мы просто освежили эти знания в твоей памяти и настало время для нечто большего – Например, для решения нашего большого примера:

Как мы уже говорили ранее, глядя на него, не скажешь, что данное уравнение является линейным, но нам необходимо раскрыть скобки и осуществить тождественные преобразования. Так что начнем!

Для начала вспоминаем формулы сокращенного умножения, в частности, квадрат суммы и квадрат разности. Если ты не помнишь, что это такое и как раскрываются скобки, настоятельно рекомендую почитать тему «Формулы сокращенного умножения», так как эти навыки пригодятся тебе при решении практически всех примеров, встречающихся на экзамене.
Раскрыл? Сравниваем:

Теперь пришло время привести подобные слагаемые. Помнишь, как нам в тех же начальных классах говорили «не складываем мухи с котлетами»? Вот напоминаю об этом.

Складываем все отдельно – множители, у которых есть  , множители, у которых есть   и остальные множители, в которых нет неизвестных.

Как приведешь подобные слагаемые, перенеси все неизвестные влево, а все, что известно вправо. Что у тебя получилось?

Как ты видишь, иксы в квадрате исчезли, и мы видим совершенно обычное линейное уравнение. Осталось только найти  !

И напоследок скажу еще одну очень важную вещь про тождественные преобразования – тождественные преобразования применимы не только для линейных уравнений, но и для квадратных, дробных рациональных и других.

Просто нужно запомнить, что при переносе множителей через знак равенства мы меняем знак на противоположный, а при делении или умножении на какое-то число, мы умножаем/делим обе части уравнения на ОДНО и то же число.

Что еще ты вынес из этого примера? Что глядя на уравнение не всегда можно прямо и точно определить, является ли оно линейным или нет. Необходимо сначала полностью упростить выражение, и лишь потом судить, каким оно является.

Линейные уравнения. 3 примера

Вот тебе еще пару примеров для самостоятельной тренировки – определи, является ли уравнение линейным и если да, найди его корни:

Ответы:

1. Является.

2. Не является.

Раскроем скобки и приведем подобные слагаемые:

Произведем тождественное преобразование – разделим левую и правую часть на  :

Мы видим, что уравнение не является линейным, так что искать его корни не нужно.

3. Является.

Произведем тождественное преобразование – умножим левую и правую часть на  , чтобы избавиться от знаменателя.

Подумай, почему так важно, чтобы  ? Если ты знаешь ответ на этот вопрос, переходим к дальнейшему решению уравнения, если нет – обязательно загляни в тему «ОДЗ», чтобы не наделать ошибок в более сложных примерах. Кстати, как ты видишь, ситуация, когда   невозможна. Почему?
Итак, продолжаем и преобразовываем уравнение:

Если ты без труда со всем справился, поговорим о линейных уравнениях с двумя переменными.

Линейные уравнения с двумя переменными

Теперь перейдем к чуть более сложному – линейным уравнениям с двумя переменными.

Линейные уравнения с двумя переменными имеют вид:

 , где  ,   и   – любые числа и  .

Как ты видишь, вся разница только в том, что в уравнение добавляется еще одна переменная. А так все то же самое – здесь нет иксов в квадрате, нет деления на переменную и т.д. и т.п.

Какой бы привести тебе жизненный пример…

Возьмем того же Васю. Допустим, он решил, что каждому из 3-ех друзей он даст одинаковое количество яблок, а   яблока оставит себе.

Сколько яблок нужно купить Васе, если каждому другу он даст по   яблоку? А по  ? А если по  ?

Зависимость количества яблок, которое получит каждый человек к общему количеству яблок, которое необходимо приобрести будет выражена уравнением:

 , где

  •   – количество яблок, которое получит   человек ( , или  , или  );
  •   – количество яблок, которое Вася возьмет себе;
  •   – сколько всего яблок нужно купить Васе с учетом количества яблок на человека.

Решая эту задачу, мы получим, что если одному другу Вася даст   яблоко, то ему необходимо покупать   штук, если даст   яблока –   и т.д.

И вообще. У нас две переменные.

Почему бы не построить эту зависимость на графике?

Строим и отмечаем значение наших  , то есть точки, с координатами  ,   и  !

Как ты видишь,   и   зависят друг от друга линейно, отсюда и название уравнений – «линейные».

Абстрагируемся от яблок и рассмотрим графически различные уравнения.

Посмотри внимательно на два построенных графика – прямой и параболы, заданными произвольными функциями:

Найди и отметь на обоих рисунках точки  , соответствующие  .
Что у тебя получилось?

Ты видишь, что на графике первой функции одному   соответствует один  , то есть   и   линейно зависят друг от друга, что не скажешь про вторую функцию.

Конечно, ты можешь возразить, что на втором графике   так же соответствует   икс –   , но это только одна точка, то есть частный случай, так как ты все равно можешь найти такой  , которому соответствует не только один  .

Да и построенный график никак не напоминает линию, а является параболой.

Повторюсь, еще раз: графиком линейного уравнения должна быть ПРЯМАЯ линия.

С тем, что уравнение не будет линейным, если у нас идет   в какой-либо степени – это понятно на примере параболы, хотя для себя ты можешь построить еще несколько простых графиков, например   или  .

Но я тебя уверяю – ни один из них не будет представлять собой ПРЯМУЮ ЛИНИЮ.

Не веришь? Построй, а затем сравни с тем, что получилось у меня:

А что будет, если мы разделим что-то на  , например, какое-то число?

Будет ли линейная зависимость   и  ?

Не будем рассуждать, а будем строить! Например, построим график функции  .

Как-то не выглядит построенное прямой линией… соответственно, уравнение не линейное.

Подведем итоги:

  1. Линейное уравнение – это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна  .

  2. Линейное уравнение с одной переменной имеет вид:
     , где   и   – любые числа  ;
    Линейное уравнение с двумя переменными:
     , где  ,   и  – любые числа  .
  3. Не всегда сразу можно определить, является ли уравнение линейным или нет.

    Иногда, чтобы понять это, необходимо произвести тождественные преобразования перенести влево/вправо подобные члены, не забыв изменить знак, или умножить/разделить обе части уравнения на одного и тоже число.

Линейные уравнения. коротко о главном

1. Линейное уравнение

Это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна  .

2. Линейное уравнение с одной переменной имеет вид:

 , где   и   – любые числа  ;

3. Линейное уравнение с двумя переменными имеет вид:

 , где  ,   и  – любые числа  .

4. Тождественные преобразования

Чтобы определить является ли уравнение линейным или нет, необходимо произвести тождественные преобразования:

  • перенести влево/вправо подобные члены, не забыв изменить знак;
  • умножить/разделить обе части уравнения на одного и тоже число.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике, 

А также получить доступ к учебнику YouClever без ограничений…

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.